科学网

您所在的位置:科学网 > 科学期刊 > 科学论文 >

施一公教授研究组在《科学》发表两篇论文

2018-09-14 13:26作者:网络整理来源:网络整理浏览次数:

施一公教授研究组在《科学》发表两篇论文


8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。

这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。

清华大学将于近期召开新闻发布会,介绍这项重大的科研成果。

——以下内容转自《赛先生》

北京时间8月21日凌晨,著名的《科学》杂志在线发表了清华大学生命科学学院施一公教授研究组的两篇具有里程碑意义的论文,宣布得到了高分辨率的剪接体三维结构和剪接体对前体信使RNA执行剪接的基本工作机理,从而将分子生物学的“中心法则”在分子机理的研究上大幅度向前推进。

“这项研究成果的意义很可能超过了我过去25年科研生涯中所有研究成果的总和!”论文发表后,《赛先生》第一时间联系到了施一公,他振奋地表示:“我此前以通讯作者身份在《科学》、《自然》和《细胞》上发表的文章总共接近50篇,但我觉得这次的意义特别重大!”

这两篇文章的题目分别为“3.6埃的酵母剪接体结构(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)”和“前体信使RNA剪接的结构基础(Structural Basis of Pre-mRNA Splicing)”。第一篇文章报道了通过单颗粒冷冻电子显微镜(冷冻电镜)方法解析的酵母细胞剪接体近原子水平分辨率的三维结构,第二篇文章在此结构的基础上进行了详细的分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理(如下图)。清华大学生命科学学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者,施一公是两篇文章的通讯作者。

完善分子生物学中心法则为何这两篇文章如此重要?

在分子生物学上,“中心法则”是描述细胞最基础也最核心的生命活动基因表达的一套规律,于1957年由英国生物学家克里克提出,对中心法则各个环节中重要生物大分子的组成、结构和功能的研究从来都是生命科学家们追逐的前沿热点。中心法则的发现与阐述伴随着多个诺贝尔奖的产生。而20多年过去了,其中公认最艰难的部分就是RNA剪接的清晰结构和复杂机理。

在所有真核细胞中,基因表达分三步进行,分别由RNA聚合酶(RNA polymerase)、剪接体(Spliceosome)、和核糖体(Ribosome)执行。首先,储存在遗传物质DNA序列中的遗传信息必须通过RNA聚合酶的作用转变成前体信使RNA (precursor messenger RNA, 简称pre-mRNA),这一步简称转录(transcription);其次,前体信使RNA由多个内含子和外显子间隔形成,必须通过剪接体的作用去除内含子、连接外显子之后才能转变为成熟的信使RNA,这一步简称剪接(splicing);第三,成熟的信使RNA必须通过核糖体的作用转变成蛋白质之后才能行使生命活动的各种功能。描述这一过程的规律被称为生物学的中心法则,其在生命科学领域具有核心重要性。

其中,RNA聚合酶和核糖体的结构解析曾分别获得2006年和2009年的诺贝尔化学奖。而剪接体是一个巨大而又复杂的动态分子机器,其结构解析的难度被普遍认为高于RNA聚合酶和核糖体,是世界结构生物学公认的两大难题之一。

施一公告诉《赛先生》:“我们的工作揭示了基因剪接的结构基础,可以把大部分生化数据连在一起,能够很好地解释过去的数据,也可以预测将来的实验结果,但未来还要继续推进这一项基础研究工作,得到一系列的结构之后才能把中心法则的基因剪接全过程描述清楚。”

从施一公研究组发表的这两篇论文可以看出,他们解析的基因剪接体是好几个主要剪接体的共有结构。施一公表示,下一步的工作重点是把不同剪接体相互间不同的地方看清楚,从而阐述内含子被去除,外显子被接在一起的分子机制。

首次在近原子层面得到细节

一直以来,对剪接体的结构解析是分子生物学里最热门的研究之一。其中最有力的竞争者是剑桥大学分子生物学实验室的日裔学者Kiyoshi Nagai博士,此前该领域近一半的工作都与他有关。而他所在的实验室也是现代结构生物学和分子生物学的奠基之处,这里曾走出14名诺贝尔奖得主。

6月24日,Nagai研究组的一篇论文于《自然》网站在线发表,其工作将剪接体所涉及的一个中心复合物tri-snRNP的分辨率提高到了5.9个埃米,一度引起轰动。而此前人类对基因剪接体的认识精度只有29个埃米。1埃米为10-10米,即把1米分成十亿份,其之微小可以想见,因此Nagai的最新工作被称为近原子尺度的结构研究。

而施一公团队此次得到的结果不仅将精度由5.9个埃米提高到了3.6个埃米,而且其解析对象是真正的剪接体,而不是Nagai团队所取得的参与剪接体组装过程的复合物,从而第一次在近原子分辨率上看到了剪接体的细节。

在施一公获得的酵母剪接体高分辨率的三维结构中可以看出,剪接体的外形轮廓十分不对称,各个蛋白相互缠绕,形成了分子量和体积巨大的复合物(如下图)。

同行评议:将受诺奖考虑

美国加州大学圣地亚哥分校(UCSD)的细胞与分子医学系教授付向东在几个月前已得知施一公得到的这一不平凡的结果,他今日通过邮件告诉《赛先生》:“我认为这是生物界的一件大事,因为世界上有多个顶尖的实验室一直在努力攻克这一难题。这一工作是施教授一生中最杰出的贡献,也是中国科学家近几十年来对科学的最重大的贡献之一。”